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Universit2ttssUasse I ,  D-W 4000 Dhsseldorf, Fedenl Republic of Germany 
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Abstract. We study non-equilibrium critical relaxation properties of model C (purely dissipative 
relaation of an order parameter coupled to a conserved density) s m i n g  from a ~CrOSCOpiCally 
prepxed initial state with short-range correlations. Using a field-theorefie renormalization group 
approach we show that d l  the stages of growth of the correlation length display universal 
behaviour governed by a new critical exponent 8. This exponent is calculated io second order 
in E = 4 - d where d is the spatial dimension of the system. 

1. Introduction 

The equilibrium state of a thermodynamic system whose parameters approach a critical point 
is characterized by long-range correlations. An interesting topic in the theory of dynamic 
critical phenomena is the relaxation of such a system from a non-equilibrium initial state 
with a small correlation length. This initial state can be prepared (at least in a computer 
experiment [ l ,  21) by quenching the system from a high temperature TO >> T, to T,. 

It is well known that within the critical region a variety of quantities such as correlation 
and response functions show universal scaling behaviour. An important goal of the theory 
is, therefore, the determination of the scaling laws that govern the non-equilibrium critical 
relaxation. A few years ago Janssen, Schaub and Schmittmann (JSS) [3] (see also [4]) 
showed that. universality is not restricted to late times after the quench [5,6] and that even 
the (macroscopically) early stages of-the relaxation process display a universal ‘initial slip’ 
scaling behaviour. They obtained the following results in the case of purely dissipative 
relaxation of an order parameter (model A in the terminology of Halperin et al [7]): 

The correlation function reads 

where 6 denotes the equilibrium correlation length. 
parameter to an external field is given by 

The linear response of the order 

If we allow for non-zero initial magnetization MO the initial growth and the decay of the 
order parameter display scaling behaviour 

M ( t )  = Mot~‘fM(t*’+fl~(vz)Mo) (3) 
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(at the critical point) with an exponent 
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. ,  

e' = e + (2 - - ? ) / z .  

In the limit of very large or very small arguments the scaling function fj,, is given by 

Meanwhile fM has been calculated and the corrections to the equilibrium value of C ( r ;  t ,  t )  
has been determined by one of us to first order in E = 4 - d [4] (d is the dimension of 
physical space). In the case of model A~the exponents 0 and 0' are universal and new, i.e. 
they cannot be expressed in terms of exponents known from statics or equilibrium dynamics. 

The 2-loop calculations performed by JSS are in good agreement with Monte Carlo 
experiments [1,2] which 'measure' the autocorrelation function C( t )  = (s(r,  t)s(r,  0)) at 
the critical point. The exponent e' can be obtained from the decay of the autocorrelation 
function according to the power law 

(4) C( t )  - t - ( W + 8 ' ,  

Recently the order-parameter relaxation in a system of finite size [8] and the effect 
of quenched random impurities on the growth of correlations [9] have been studied. In 
this work we consider the effect of a non-critical conserved density coupling to the order 
parameter. Such conserved densities are abundant: energy, annealed random impurities, 
particle densities in binary mixtures, etc. It is very well known that the presence of a 
conserved density modifies the critical dynamics if the specific heat exponent a > 0. Here 
we will find the following results: 

The short time scaling forms (1) and (2) remain valid and the relaxation of a non- 
conserved order parameter is still given by equation (3), but the exponents e and e' depend 
on the dynamic universality class of the system. As in the case of model A, the initial slip 
exponent is universal and new. 

We use dynamic field theory [10-12] to calculate e for model C [7,13] to second order 
in e = 4 - d. 

2. 'The model 

The dynamics of an order-parameter field s coupled to a non-critical conserved density m 
can be expressed in the form of the Langevin equations 

with the Hamiltonian 

1 %[s, m] = / ddr [ 2 + ~ ( 0 s ) ~  1 i -s4 g 1  + -m2 + -ms2 Y - h,m . (6) 
4! 2 2 
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We adjust the external field h, in such a way that (m) = 0. 5 and rl are Gaussian random 
forces with zero mean and the correlations 

( { (T ,  t)<(r’, t’)) = Z M ( T  - ~ ’ ) 6 ( t  - t’) 

(i(~, t)q(r‘, 1’)) = -2hpAS(r - ~ ’ ) & ( t  - t’). 
(7) 

Since we are interested in the relaxation of the system from a non-equilibrium initial 
state we have to specify the distribution of the fields SO(T)  = S ( T ,  t = 0) and mo(r) = 
m ( r ,  t = 0). A quench from a temperature TO >> T, corresponds to 

 so, mol cx exp(-@’[so, mol) (8) 

where 

This guarantees that the initial correlations are short~range: 

(So(T)So(T‘)) = TL’6(7‘ - T’) 

(mo(r)mo(r’)) = C&T - T’).  

Further terms in %[SO, mol turn out to be irrelevant. 
An equivalent formulation for the dynamics is given by the stochastic functional [I41 

1 J [ S ,  s; E, m] = lm dt 1 ddr (S [a,, + h(r - A)s + -A- hg 3 + hysm 
3! 

(11) 
- i s 2  + k a t m  - hp(ak) (?s2 Y + m> - i p ( v ~ ) z ]  

where d and Fz are the’MartinSiggia-Rose response fields 1151. 
The weight exp(-J) integrated over the response fields may be interpreted as the 

probability of a realization of the stochastic process (s(r ,  t ) .  m(r ,  I ) )  starting from an initial 
configuration (so(T) ,  mO(T)) of the order parameter and the conserved density. In order to 
calculate correlation and response functions we have to average over the random forces and 
the initial configurations. For~this purpose functional integrations of the form 

($(T, 2) .  . .) = SD[iS,  s ;  i k ,  mls(r, t )  . . . exp(-Z[:, s; E. m 1 - 7 ~ [ s o ,  mol) 

have to be performed. The brackets (. . .) indicate an average with respect to thermal noise 
and initial conditions. 

As in the case of model A [3] the fixed point of the ‘initial temperature’ to under 
renormalization group transformations can be found by dimensional analysis. Since sa - &* 
(where I*.-’ is an external length scale) the fixed points are T; = 0 and r; = f m ,  but only 
r; = +a, corresponds to a normalizable probability distribution. 

These simple arguments do not hold for the (dimensionless) constant co, so further work 
is necessary to obtain its fixed point. We defer this to the next section. 
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3. Renormalization 

As a first step in the study of the non-equilibrium relaxation of model C we have to calculate 
the comelators and propagators of the Gaussian theory. The Gaussian model serves as the 
‘free part’ of a perturbation series which we will analyse by the methods of renormalized 
field theory [IO, 121. 

K Oerding and H K Janssen 

For the Gaussian part one easily finds 

Gq(t,t ’ )  : = /ddre-iq‘(s(r,t)S(O, f’)) 

C&, t’) : = / ddr e-’g‘(s(r, t)s(O, t’)) 

= exp(-h(s + q2)( t  - f‘)) for f t‘ 

= C y ( t  - t’) + c:’(t, t’) 
with the equilibrium correlator 

and a non-equilibrium (‘initial’) part 

Thus the fixed point r;’ = 0 corresponds to sharp Dirichlet initial conditions so = 0 for 
the order-parameter field. Analogously, 

Gm,& - t‘) : = / ddr e-iqT(m(r, z)Fz(O, t’)) 

~ ~ , ~ ( t ,  i‘) : = /d‘re+‘(m(r, t ) m ( ~ ,  t o )  

= exp(-Apq2(t - t‘)) for f > t‘ (16) 

= c::;(t - t‘) + c(i’ m,q (t .  t‘) (17) 

with 

C,$$(f - t’) = exp(-Apq2[t - f‘[) (18) 

(1% ~ $ ~ ( t , i ’ )  = (CO - ~)exp(-~pq‘(t +t’)). 

More complicated correlation functions can be calculated by means of Wick‘s theorem. 
From now on we set 7;’ = 0. 

Since the use of the field-theoretic formalism in the theory of critical phenomena is 
described in several text books [I 61 we restrict ourselves to the main steps of the calculation. 

First, ultraviolet divergent integrals which occur in the perturbation series have to be 
rendered finite by a regularization procedure. We choose dimensional regularization, i.e. 
the integrations are performed for dimensions d = 4 - E where no divergence is present. 
The results are analytically continued to other dimensions. Renormalizability of the theory 
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guarantees that the remaining poles at E = 0 can be absorbed into a finite number .of 
reparamebizations of coupling constants and fields. In the theory of equilibrium critical 
dynamics these renormalizations are [17,18] 

0 112- ; = z,ys J = z, s 

0 112 . = z-1/2fi m=Z,  m m 

Zs; = Z,S ~ G,Z,ZZ,y o2  = Zyy 2 2 6  p (20) 

G,Z,:i = (Zuu + 3Z;/Zmy2)pf U = U + 3y2 
0 0 0  

h = (z,v/zF)'/?zAh h p  = zAzpzmhp. 

Bare quantities are indicated by ' O ' ;  the geometrical factor G, = r ( l  + ~/2)/(4rr)~/~ has 
been introduced for convenience. ~~ 

As a result of the simple quadratic structure of the Hamiltonian with respect to the 
conserved density there are several relations between (20) and the renormalization of model 
A. Z,? and 2, depend on U only and are the same as in model A. Moreover Z, = Z,, 
where Z, differs from the temperature renormalization in model A by a factor Z, [18]. 
The identity Z, = Z, = 1 follows from a dissipation fluctuation theorem [12]. 

The Z factors defined above suffice to absorb the E poles in a field theory which 
is translationally invariant with respect to both space and time. However, the imposed 
non-equilibrium initial conditions break the translational invariance with respect to time. 
It is well known from the theory of surface critical phenomena [19,20] that boundary 
conditions require additional renormalizations of surface coupling constants and fields. 
Analogously we have to subtract ultraviolet divergences which are located in the 'time 
surface' t = 0. These divergences appear in the non-translationally invariant contributions 
to the perturbation series which result from the initial parts (15), (19) of the correlators 
and from the restriction of internal time integrations to positive times t > 0. Compared 
with translationally invariant integrals such contributions contain one more time integration 
which is effective in decreasing the degree of divergence. By naive power counting time 
scales as t - for a non-conserved order parameter. We therefore conclude that the 
absence of translational invariance with respect to time decreases the superficial debee of 
divergence by two. 

As in the case of a semi-infinite system the renormalization of'the (one-particle 
irreducible) vertex functions alone does not suffice to produce a well defined renormalized 
theory. Therefore we have to study the full'oneparticle reducible Green functions 

(21) 

The above considerations show that we have to expect new (logarithmic) divergences in 
the two-point Green functions (?s) and (ss) since they are quadratically divergent in a 
translationally invariant theory. These divergences are suppressed in graphs where a vertex 
is connected to an external point by a correlator line because the correlator tends to zero as 
one of its time arguments approaches the 'surface' t = 0. Thus we only need to renormalize 
the response function (s (T ,  t)J(y', 0)) where one external point is fixed to t' = 0. The two- 
point correlation function ( s ( T ,  t)s(r', 0) )  vanishes identically as a result of the Dirichlet 

N - i /  M - 2  G~/,,V;G,,M := ([SI [SI [ml [ml ). 
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Figure 1. Typicd Feynman graphs contributing to r$,(q, t)[jol at 2-loop order. The hatched 
m a  corresponds to the ‘time surface’ I = 0. 

initial conditions. Insertions of the time derivative &(r) = &s(r, t)lr=o in Green functions 
are related to the response field SO(T) = S(r, t = 0) by 

So(r )  = 2hSo(r). (22) 
This has been verified by JSS who considered the corresponding Feynman graphs. Away 
from the fixed point 7; = M insertions of the field SO(T) are different from zero and we 
have 

S O ( T )  = 7;150(r). 
For the conserved density one finds at f = 0 

mo( r )  = cot& (24) 
and, for CO = 0, 

h o ( ~ )  = -2hpAtEofr). (25) 
Consequently there is only one new 2 factor, 20, required to renormalize Green functions 
with external legs fixed to t = 0: 

(26) 
For the determination of 20 it is convenient to write the response function in the 

(I 

so + 50 = (zo&)”%o. : 

following form (31: 

Ch,,(q, t )  : = /ddr  e-’4T(s(r, t )S(O,  0)) 

= l d f & ( q ;  hf’)i$,(q,t‘)[;ol (27) 

where e,,,(q; t ,  t’) is the full unrenormalized response function calculated only with the 
equilibrium parts (14) and (18) of the correlators. rti(q. ~)L:~J is a reducible I-point vertex 
function with an amputated &leg and a single insertion of the response field ZO. It contains 
in its last irreducible part at least one initial carrelator (15) or (19). Figure 1 shows some 
of the Feynman graphs contributing to rf,i(q, t)[al at 2-loop order. 
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Although &(q; f ,  t’) is calculated with equilibrium propagators and correlators it is 
different from the translational invariant equilibrium response function GiY(q; t -f‘). This 
is due to the restriction of internal time integrations to positive times t > 0. 

Yet we can relate GiY(q; f  - t‘) to c ~ , ~ ( q : t , t ‘ )  by an equation similar to (27). 
Usually one calculates equilibrium Green functions by means of a stochastic functional 
like (11) where the lower limit of time integration ( t  = 0) is replaced by t = -W. 

Ergodicity of the dynamics then implies that the initial conditions at t = -CO do not affect 
equilibrium averages. We obtain the same results if we choose the equilibrium distribution 
Peq[s0, mol a exp(-’H[so, mol) instead of (8) to average over the initial fields $0 and mo. 
In this way one gets a perturbation series for GEyi(q; t-t’) where internal time integrations 
range from zero to infinity. Nevertheless Gt;)(q;  t - t’) differs from 61,1(q; r ,  t’) because 
the non-Gaussian probability distribution ’Peq[so, mol generates additional vertices which are 
located at t = 0. 

We can now write 

where i‘$)(q, t”)[:(p)] is a reducible vertex function with an insertion of S(t’). Like- 
(?~.l(q; t ,  t’) it is calculated with equilibrium conelators but it contains in its last irreducible 
part at least one of the new ‘initial vertices’. 

For model A, I$)(q, t)[:(i91 = 8(r - t‘) fO(3-loop) (provided we set T = 0 as will be 
done in the following), whereas in case of model C there are already non-trivial contributions 
at 2-loop level. The corresponding Feynman graphs are given in figure 2. 

Figure 2. Feynman graphs conlributing to l$)(q, r)lj,l at 2-loop order. 

In .equation (28) rF:)(q, t)[?(pj1 operates as an integral kernel. This kernel can be 
inverted order by order in perturbation theory, i.e. we can define an inverse K ( q ;  t ,  t’) by 

Together with equations (27) and (28) this yields 
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where 

The 2-loop result for the singular part of this ‘vertex function’ is given by 

{ - n f 2 g 2 [ n  + 14 + ~ ( n  + 20 + (n + 2) In2)l 
( 4 d d  726 + 

n + 2  gy2 I + -- [3 + Z P  + € U l @ )  + (1 - CO) 
3E l + p  

(32) 

ai, bi, and ci are complicated functions of p [21] which we do not show here for general 
p since they would fill several pages of this paper. Fortunately, we only need to know 
their values at p = 1 in order to calculate the new exponent for a one-component order 
parameter (n = 1). In this case a;, bi, and ci reduce to simple expressions: 

q ( 1 )  = 8 + 5 l n 2 - 2 l n 3  a z ( l ) =  ; + I n 2 - ~ l n 3  1 

bl(1) = 13+ 161n2-71n3 bz(1) =61n2-41n3 (33) 
_. 
cI (1) = + 27 In 2 - 12 In 3 ~ ( 1 )  = 3 c3(1) = $ + 3 In 2 - 3 In 3. 

We now have to express the bare quantities on the right-hand side of equation (33) in 
terms of their renormalized counterpm (20). The corresponding 2 factors are given in the 
literature [18,17]. However, we do not yet know how to renormalize the initial correlation 
CO of the conserved field. 

To obtain the missing renormalization we make use of two equations of motion. The 
first one, 

6 
0 = D[iS, s; ii%, m]- m ( ~ ,  t )  exp(-J[i, s; i%, m] - 7-1“’[so, mol) s Smo(T’) 
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gives 

This relation can also be checked~ by an analysis of the corresponding Feynman graphs. 
Together with 

(m(r, t)m(r‘, 0)) = co(m(r, t)%(r’, 0)) for t  > 0. 

s ddr (m(r, t)fi(r’, 0)) = 1 

(which results from the conservation law) this yields 

ddr (m(r, t)m(r’, 0)) = CO for all t 0. (35) s 
The second equation of motion is 

o = 
8 

W T ,  t )  
D[is, s; ifi, m]--m(r‘, t‘) exp(-J[S, s: f i ,  m] - ‘Ft‘”[so, mol) 

= (m(r’, t’)[-a,m(r, t )  + h p A ( f y s 2  + m - 2%)(r, i)]). 
s 

Taking the zero-momentum limit one finds 
, .  1 ddr a,(m(r, t)m(r’, t‘)) = 0 

s d‘r~(m(r, t)m(r’, f’)) = CO 

CO + = Z&. (36) 
We now obtain the new Z factor, ZO, from equations (30) and (33). Since theequilibrium 

response function is translationally invariant the Laplace transform of GA,,(q, t )  consists 
of two factors. The first one is the Laplace transform of G:Y’(q,t) which has to be 
multiplicatively renormalized by (Z,Z:)-’/2 as usual. The second factor is the Laplace 
transform of rI,o(q, t)ifol. It requires an additional renormalization: 

and, by equation (33 ,  

for all t, t’ > 0. 

Thls result implies the renormalization 

2;’” dt e-io‘i?I.o(q, t)[ t0,  =finite for E + 0. lm 
We apply the minimal subtraction scheme, i.e. we absorb only the singular part of the 

vertex function into ZO. In this way we get 



3378 

where 

K Oerding and N K Janssen 

Az( 1) = -$( 1 + In2 - In 3) 

&(I) = + 31112 - 41n3 

Cz(1) = + 5 h 2  - 6 l n 3  

5 A I  (1) = 9 - In 2 - 
&(I)  = -7 - 8 h 2 +  l i  In3 

Cl(1) = -13 - 4 h 2 +  151n3 

C3(1)=-$-41n2+3in3. 

In3 - 

(38) 

4. Scaling 

With knowledge of Zo we are now in a position to determine the scaling behaviour of 
connected Green functions 

(39) 
z - 0  N - f i  

' i , N ; f i , M  = ([Col [SI [SI tml [mIM) 

where i S-legs are fixed to t = 0. This function has to be renormalized according to 

.ai 
The bare Green function G f i , * ~ , ~  does not depend on the external momentum scale p 
introduced in equation (20). We exploit this fact to derive the renormalization group equation 
(RGE) in the usual way. It reads 

[ ~ a p + ~ ~ a h + K ~ a , + B u a u + ~ v a , + B p a p + ~ i ( ~ o + ~ v ) + ~ ~ v j  

+ $ N E ,  + - .bi)ym - Y~c~~~IG~,,;.,~ = 0. (41) 

The Wilson functions 

are known from the equilibrium critical dynamics except for yo which follows from (38) 
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At the fixed point U*, y:, p* ?.he initial coielation CO scales as CO + l - smco at a scale 
transformation r +. l r .  This can be easily checked in the RGE. Since qm = - Z / u  (where 
5 = max(a, 0)) and a > 0 for a one-component order parameter in dimensions 4 z d > 2 
we may set CO = c: = 0 to obtain the asymptotic scaling behaviour 

equation (43) yields the new exponent (for n = 1) 

The short-time scaling behaviour given in the introduction follows from the short-time 
expansion [3] 

By means of the RGE one finds at the fixed point the power-law behaviour 

Lqt) - t-8 (49) 

U ( f )  - t-B+* (50) 

with 0 = -qo/(Zz). This equations together with (44) tell us that the correlation and 
response functions satisfy the scaling laws 

where the scaling functions F and 

scaling behaviour 

are non-singular for f' + 0. 
By equations~ (23) and (44) we find for the autocorrelation function (s(T,  t)so(r)) the 

~ ( t )  = 5;' (s(T, t )?O)  = ~; ' t - (d /z -s ' j f ( t /~z)  (53) 

with 0' = e + (2 - z - q) /z .  
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It is well known that the strong scaling fixed point (p, finite) considered above is stable 
for n = 1 and E small but it becomes unstable in other regions of the (n. d)  plane. This 
has been discussed in detail by Brezin~ind De Dominicis [17]. 

To the right of a line 

n = N l ( t ) = 4 - ( ~ + ~ 1 n 0 ) t + o ( t 2 )  (54) 

the fixed point p* = 00 governs the critical behaviour of the system. In this limit the Wilson 
function yo is given by 

yo = - i (n+2)u+ $(n +2)u2(1 -21n2) - n y z  +0(3-]oop) (55) 

and we find for the critical exponent 

where qf) is the value of qa for model A. For n = 1 the exponent B as a hnction of 
dimension d is shown in figure 3. 

0.5 h I I I 

Figure 3. The exponent e (in second order in E) 3s a function of dimension d full curve, model 
C (fined point p .  finite): broken curve, model C (fixed point p* = m); dotted curve, model A. 

5. Conclusions and outlook 

We have extended the study of the short-time scaling behaviour of critical relaxation 
processes to systems with a conserved~quantity coupling to the order parameter. 

In model C the (short-range) initial correlations of the order parameter and the conserved 
density have no effect on the asymptotic scaIing behaviour and so it is sufficient to consider 
an initial state with vanishing correlations. For a one-component order parameter the fixed 
point of the coupling coefficient p (ratio of the kinetic coefficients of the conserved density 
and the order parameter) is finite while p+ = 00 in a another region of the (n. d)  plane. In 
both cases we have obtained the initial slip exponent to second order in E = 4 - d. 

Brezin and De Dominicis [17] have shown that in a third region the fixed point p* = ~ O  
is attractive. After integration over the conserved field the limit p --f 0 can be performed 
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directly in the weight exp(-.T). This gives a dynamic functional with a new interaction 
which is non-local with respect to time and corresponds to the presence of quenched 
impurities. The relaxation of systems with this kind of disorder has been studied by Kissner 
[9]. However, the order of the limit p + 0 and the E expansion cannot be exchanged. 

The renormalization group analysis of non-equilibrium critical relaxation presented here 
should be continued by a calculation of correlation and response functions and the scaling 
function describing the order-parameter decay. 

An experimental test of OUT results by aquench of a real system from a high temperature 
to Tc is difficult since the temperature has to be stabilized sufficiently rapidly to render an 
observation of the initial stage of the relaxation possible. We therefore suggest performing 
Monte Carlo simulations to obtain 'experimental' values of the initial slip exponents which 
can be compared with the predictions of the E expansion. 

In a subsequent paper the relaxation of systems with reversible mode coupling of 
conserved fields to the order parameter will be studied. 
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